GP2W3120YP0F

IrDA Compliant Transceiver Module 9.6 kb/s to 4 Mb/s (FIR) Low Profile Low Consumption Current

Description

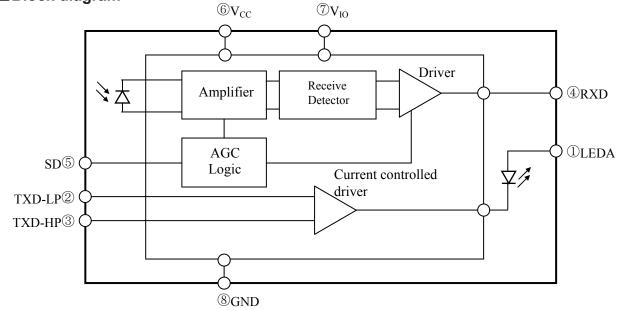
The **GP2W3120YP0F** is an infrared transceiver module for IrDA ver. 1.4 (FIR).

The transceiver consisits of a pin-photo diode, infrared emitter and control IC in a single package. This device have remote control transmission function.

Features

- 1. Compliant with the IrDA 1.4 (FIR) Transmission speed : 9.6 kb/s to 4 Mb/s Transmission distance : 20 cm
- 2. Small package L 7.16 × W 2.73 × H 1.82 mm
- 3. Peak emission wavelength : 890 nm
- (Built-in shared single LED for RC and IrDA) 4. Side view type
- Soldering reflow type
- Soldering reno
 Shield type
- Since type
 Low consumption current due to shutdown function (Consumption current at shutdown mode : Max. 1.0 μA)
- 8. Operates from 2.7 to 3.3 V
- 9. With remote control function
- 10. With LP/HP mode switching function
- 11. With VIO terminal

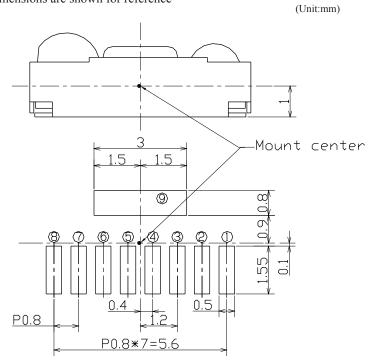
■Agency approvals/Compliance

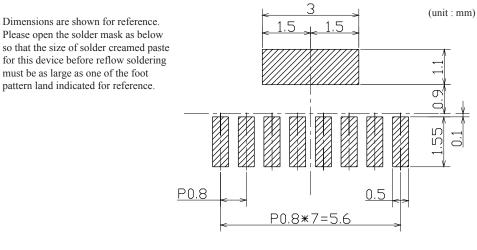

- 1. Compliant with IEC60825-1 class 1 eye safety standard
- 2. Compliant with RoHS directive (2002/95/EC)
- 3. Content status of six substances specified in "Management Methods for Control of Pollution Caused by Electronic Information Products Regulation" (popular name : *China RoHS*) (Chinese : 电子信息产品污染控制管理办法) ; refer to page 14
- 4. Lead (Pb) free device


Applications

- 1. Mobile equipment (Cellular phone, Pager, Smart phone, PDAs, Portable printer, etc.)
- 2. Digital imaging equipment (Digital camera, Photo imaging printer)
- 3. POS equipment
- 4. Personal computers
- 5. Personal information tools

SHARP


Block diagram


Recommended PCB Foot Pattern

Dimensions are shown for reference

	Terminal	Symbol
1	LED Anode	LEDA
2	Transmitter Data Input LP	TXD-LP
3	Transmitter Data Input HP	TXD-HP
4	Receiver Data Output	RXD
(5)	Shutdown	SD
6	Supply Voltage	V _{CC}
\bigcirc	Logic I/O levels	V _{IO}
8	Ground	GND
9	Shield Ground	SGND

■ Recommended Size of Solder Creamed Paste (Reference)

Solder paste area

Absolute Maximum Ratings (T_a=25°C) Parameter Symbol Unit Rating V_{CC} V Supply voltage -0.3 to 6.0 -0.3 to 3.6 V LED Supply voltage V_{LED} Transmission Data Input LP -0.3 to V_{CC} +0.3 V TXD-LP -0.3 to V_{CC} +0.3 Transmission Data Input HP TXD-HP V -0.3 to V_{CC}+0.3 V Shut down SD V_{IO} -0.3 to V_{CC}+0.3 Logic I/O levels V *1 Peak forward current I_{FM} 330 mА °C Operating temperature T_{opr} -25 to +85 °C Storage temperature -40 to +85 T_{stg}

 T_{sol}

*1 Pulse operation (FIR 4 Mb/s)

Soldering temperature

*2

*2 Soldering reflow time : 10 seconds

°C

260

GP2W3120YP0F

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Param	eter	Symbol	Rating	MIN.	TYP.	MAX.	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Current consumption SIR mode		I _{CC-SIR}	No input signal, V _{ILSD} =0V	_	0.45	0.6	mA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	at no	o input signal	FIR mode		Output terminal OPEN	_	1.2	1.55	mA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Current consumption SIR mode			V _{ILSD} =0V		0.65		mA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1			Output terminal OPEN				mA	
at Shutdown mode $\frac{10 \text{Ccs}}{100000000000000000000000000000000000$		-				_		55	mA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1		I _{CC-S}		_	0.01	1.0	μΑ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$]	High level output v	oltage	V _{OH}	$I_{OH} = 0.3 \text{mA}^{*3}$	V _{IO} -0.5	V _{IO} -0.3	V _{IO} +0.3	V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					$I_{OI}=1$ mA ^{*3}	_	_		V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-					_			ns
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-				BR=4Mb/s, C_L =15pF, T_a =25°C ⁺⁵				ns
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F					1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					$t_{w1}, E_{e1}; BR=9.6 \text{kb/s}, \phi \leq 15^{\circ}$				μs
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $]	Low level pulse wid	dth						μs
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-			$t_{w3}, E_{e2}; BR=4Mb/s(single), \phi \leq 15^{\circ}$				ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	er							320	ns
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Seiv	Maximum reception	n distance			21		—	cm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{2}{2}$ Input irradiance				ů				μW/cm
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-							20.4	µW/cm
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Overload irradiance		E _{e3}		500			mW/cm
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Receiver Latency		t _l		—		500	μs
$ \begin{array}{ c c c c c c c c c } \hline SD input current & I_{isd} & V_{HSD} = V_{CC}, V_{ILSD} = GND & -0.1 & 0 & +0.1 \\ \hline SD terminal Input voltage Logic High & V_{HSD} & Shutdown mode & V_{CC}-1.2 & & V_{CC} \\ \hline SD terminal Input voltage Logic Low & V_{ILSD} & Normal mode & & & 0.5 \\ \hline Jitter & t_{j} & BR = 4Mb/s, T_{a} = 25^{\circ}C & & 30 & 60 \\ \hline Jitter & t_{j} & BR = 4Mb/s, T_{a} = 25^{\circ}C^{*4} & 10 & & \\ \hline High power & I_{E-LP} & & V_{LED} = 3.3V, R_{LED} = 4.3\Omega & \\ \hline High power & I_{LED-LP} & V_{LED} = 3.3V, R_{LED} = 4.3\Omega, T_{a} = 25^{\circ}C^{*4} & 25 & & \\ \hline LED peak current & & Low power & I_{LED-HP} & V_{LED} = 3.3V, R_{LED} = 4.3\Omega, T_{a} = 25^{\circ}C^{*4} & 100 & 150 & 200 \\ \hline Iso & 250 & 330 & 150 & 250 & 330 \\ \hline Rise time & t_{f} & BR = 4Mb/s, V_{LED} = 3.3V, T_{a} = 25^{\circ}C^{*4} & & -40 \\ \hline Peak emission wave length & \lambda_{p} & T_{a} = 25^{\circ}C & 870 & 890 & 900 \\ \hline TXD-LP / TXD-HP & V_{HTXD} & LED(ON), 1.5 \leq V_{IO} \leq 1.8V & 1.4 & & V_{CC} \\ \hline TXD-LP / TXD-HP & V_{HTXD} & LED(OFF) & & - & 0.6 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{a} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{A} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I_{HTXD} & T_{A} = 25^{\circ}C & & & 20 \\ \hline TXD-LP TXD-HP & I$	1	Receiver wakeup time		t _{sdw}	No input signal	_	_	1	ms
$ \frac{\text{SD terminal Input voltage Logic High}}{\text{SD terminal Input voltage Logic Low}} V_{\text{HSD}} \frac{\text{Shutdown mode}}{\text{Normal mode}} = \frac{V_{\text{CC}-1.2}}{-} = \frac{V_{\text{CC}}}{0.5} \\ \frac{\text{SD terminal Input voltage Logic Low}}{\text{Jitter}} V_{\text{ILSD}} Normal mode} = \frac{-}{-} = \frac{-}{0.5} \\ \frac{\text{Jitter}}{\text{Jitter}} t_{j} BR=4Mb/s, T_{a}=25^{\circ}\text{C} -} 30 60 \\ \frac{\text{V}_{\text{LED}}=3.3 \text{V}, \text{R}_{\text{LED}}=4.3\Omega}{\phi \leq 15^{\circ}, T_{a}=25^{\circ}\text{C}^{*4}} 10 -} - \frac{-}{-} \\ \frac{\text{LeD peak current}}{\text{High power}} \frac{1_{\text{LED-LP}}}{\text{High power}} V_{\text{LED}}=3.3 \text{V}, \text{R}_{\text{LED}}=4.3\Omega, T_{a}=25^{\circ}\text{C}^{*4}} 25 - \frac{-}{0} \\ \frac{\text{LeD peak current}}{\text{High power}} \frac{1_{\text{LED-LP}}}{\text{High power}} V_{\text{LED}}=3.3 \text{V}, \text{R}_{\text{LED}}=4.3\Omega, T_{a}=25^{\circ}\text{C}^{*4} 100 150 200 \\ 150 250 330 \\ \frac{150 250 330}{150 250 330} \\ \frac{150 250 330}{150 250 330} \\ \frac{160 150 250 330}{150 250 330} \\ \frac{160 150 250 330}{150 250 330} \\ \frac{161 \text{Hime}}{\text{Fall time}} t_{f} BR=4Mb/s, \text{V}_{\text{LED}}=3.3 \text{V}, \text{T}_{a}=25^{\circ}\text{C}^{*4} -40 \\ \frac{161 \text{Peak emission wave length}}{150 250 330 150 250 330} \\ \frac{17 \text{XD-LP }/\text{TXD-HP}}{\text{high level input voltage}} V_{\text{HTXD}} LED(\text{ON}), 1.5 \leq V_{\text{IO}} \leq 1.8 \text{V} 1.4 V_{\text{CC}} \\ \frac{12 \text{ED}(\text{ON}), 1.8 \leq V_{\text{IO}} \leq V_{\text{CC}} 1.6 V_{\text{CC}} \\ \frac{17 \text{XD-LP }/\text{TXD-HP}}{\text{Iow level input voltage}} V_{\text{ILTXD}} LED(\text{OFF}) - 0.6 \\ \frac{17 \text{XD-LP }/\text{TXD-HP}}{\text{high level input current}} I_{\text{HTXD}} T_{a}=25^{\circ}\text{C} -20 \\ \frac{17 \text{XD-LP }/\text{TXD-HP}}{\text{Input current}} I_{\text{HTXD}} T_{a}=25^{\circ}\text{C} -20 \\ \frac{17 \text{XD-LP }/\text{TXD-HP}}{\text{Input current}} V_{\text{ILTXD}} V_{\text{ILTXD}} V_{\text{ILED}}=3.3^{\circ}\text{C} -20 \\ \frac{17 \text{XD-LP }/\text{TXD-HP}}{\text{Input current}} I_{\text{HTXD}} T_{a}=25^{\circ}\text{C} 20 \\ \frac{17 \text{XD-LP }/\text{TXD-HP}}{\text{Input current}} U_{\text{HTXD}} U_{\text{ILTXD}} U_{\text{ILED}(\text{OFF}) 20 \\ \frac{17 \text{XD-LP }/\text{TXD-HP}}{\text{Input current}} U_{\text{HTXD}} U_{\text{ILTXD}} $		SD input current			V _{IHSD} =V _{CC} , V _{ILSD} =GND	-0.1	0	+0.1	μA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		SD terminal Input voltage Logic High				V_{CC} -1.2	_	V _{CC}	v.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-					_			V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-								ns
Radiant intensityLow power I_{E-LP} $\phi \leq 15^{\circ}$ $T_a=25^{\circ}C^{*4}$ 10 $ -$ High power I_{E-HP} $V_{LED}=3.3V, R_{LED}=4.3\Omega$ $\phi=15^{\circ}$ 25 $ -$ LED peak currentLow power I_{LED-LP} High power $V_{LED}=3.3V, R_{LED}=4.3\Omega, T_a=25^{\circ}C^{*4}$ 100 150 200 Rise timetr T_{r} Fall time $BR=4Mb/s, V_{LED}=3.3V, T_a=25^{\circ}C^{*4}$ 100 150 200 Fall timetr T_r Peak emission wave length λ_p $T_a=25^{\circ}C$ 870 890 900 TXD-LP / TXD-HP high level input voltage V_{ILTXD} $LED(ON), 1.5 \leq V_{IO} \leq 1.8V$ 1.4 $ V_{CC}$ TXD-LP / TXD-HP high level input voltage V_{ILTXD} $LED(OFF)$ $ 0.6$ TXD-LP TXD-HP high level input voltage V_{ILTXD} $T_a=25^{\circ}C$ $ 20$ TXD-LP TXD-HP high level input current I_{HTXD} $T_a=25^{\circ}C$ $ 20$ TXD-LP TXD-HP high level input current I_{HTXD} $T_a=25^{\circ}C$ $ 20$				- Cj			50	00	
$\frac{1}{1} \frac{1}{1} \frac{1}$		Radiant intensity	Low power	I _{E-LP}	$\phi \leq 15^{\circ}$, T _a =25°C ^{*4}	10			mW/sr
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			High power	I _{E-HP}		25	_	_	mW/sr
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		IED pools our	Low power	I _{LED-LP}	$-220 T - 25^{\circ} C^{*4}$	100	150	200	mA
Rise time t_r Fall time $Rise time$ t_r Fall time $Re=4Mb/s, V_{LED}=3.3V, T_a=25^{\circ}C^{*4}$ $ 40$ Peak emission wave length λ_p $T_a=25^{\circ}C$ 870 890 900 TXD-LP / TXD-HP high level input voltage V_{IHTXD} $LED(ON), 1.5 \leq V_{IO} \leq 1.8V$ 1.4 $ V_{CC}$ TXD-LP / TXD-HP low level input voltage V_{IHTXD} $LED(ON), 1.8 \leq V_{IO} \leq V_{CC}$ 1.6 $ V_{CC}$ TXD-LP / TXD-HP low level input voltage V_{ILTXD} $LED(OFF)$ $ 0.6$ TXD-LP TXD-HP high level input current I_{HTXD} $T_a=25^{\circ}C$ $ 20$ TXD-LP TXD-HP high level input current I_{HTXD} $T_a=25^{\circ}C$ $ 20$			High power	I _{LED} -HP	v_{LED} - 3.3 v, κ_{LED} - 4.322, I_a = 23 \bigcirc	150	250	330	mA
Fall time $t_{\rm f}$ $BR=4MD/S, V_{\rm LED}=3.3 V, T_{\rm a}=25 C$ $ 40$ Peak emission wave length $\lambda_{\rm p}$ $T_{\rm a}=25^{\circ}C$ 870 890 900 TXD-LP / TXD-HP $V_{\rm HTXD}$ $LED(ON), 1.5 \leq V_{\rm IO} \leq 1.8V$ 1.4 $ V_{\rm CC}$ high level input voltage $V_{\rm HTXD}$ $LED(ON), 1.8 \leq V_{\rm IO} \leq V_{\rm CC}$ 1.6 $ V_{\rm CC}$ TXD-LP / TXD-HP $V_{\rm ILTXD}$ $LED(OFF)$ $ 0.6$ TXD-LP TXD-HP $V_{\rm ILTXD}$ $LED(OFF)$ $ 20$ TXD-LP TXD-HP $I_{\rm HTXD}$ $T_{\rm a}=25^{\circ}C$ $ 20$ TXD-LP TXD-HP $I_{\rm HTXD}$ $T_{\rm a}=25^{\circ}C$ $ 20$]	Rise time			DD AM / M = 2.0 M = 2.0 M	_	_	40	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	G	Fall time			BR=4Mb/s, V_{LED} =3.3V, I_a =25 C	_		40	ns
Inight even input voltageVILTXDLED(OIV), 1.8 < VID = VCCVIDVCCTXD-LP / TXD-HP low level input voltageVILTXDLED(OFF)0.6TXD-LP TXD-HP high level input currentIIHTXD $T_a=25^{\circ}C$ 20TXD-LP TXD-HP high level input currentIIHTXDT = 25^{\circ}C8	nitt	Peak emission wave	e length	λ _p	T _a =25°C	870	890	900	nm
Inight even input voltageVILTXDLED(ON), 1.8 < VIO = VCCVIO = VCCTXD-LP / TXD-HP low level input voltageVILTXDLED(OFF)0.6TXD-LP TXD-HP high level input currentIIHTXD $T_a=25^{\circ}C$ 20TXD-LP TXD-HP high level input currentIIHTXDT = 25^{\circ}C8	ISU		-				_		V
TXD-LP / TXD-HP low level input voltage V_{ILTXD} LED(OFF)0.6TXD-LP TXD-HP high level input current I_{IHTXD} $T_a=25^{\circ}C$ 20TXD-LP TXD-HP high level input current I_{IHTXD} $T_a=25^{\circ}C$ 8	Ľ			V _{IHTXD}					V
TXD-LP TXD-HP high level input current I_{IHTXD} $T_a=25^{\circ}C$ 20TXD-LP TXD-HP I_{IHTXD} $T=25^{\circ}C$ 8	,	TXD-LP / TXD-HP		V _{ILTXD}		_	_		V
TXD-LP TXD-HP $T = 25^{\circ}C$ $-$ 8	,	TXD-LP TXD-HP		I _{IHTXD}	T _a =25°C			20	μΑ
	,	TXD-LP TXD-HP		I _{ILTXD}	T _a =25°C	_		8	μΑ
Maximum optical pulse widtht_{OPWM}TXD pin stuck high30—300	Ī	Maximum optical n	oulse width	t _{OPWM}	TXD pin stuck high	30		300	μs

*3 Refer to Fig. 2, 3 *4 Refer to Fig. 4,5,6

Recommended Operating Conditions

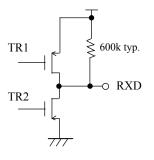
Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V _{CC}		2.7 to 3.3	V
LED Supply voltage	V _{LED}	$R_{LED}=4.3\Omega$	2.7 to 3.6	V
Operating temperature	T _{opr}	*5	-25 to +85	°C
Data rate	BR		9.6k to 4M	b/s
Logic I/O levels	V _{IO}		1.5 to V_{CC}	V

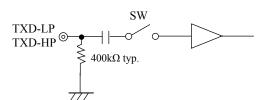
*5 When you make Duty 25 % of signal emit light continuously,

please use continuation luminescence time in less than 10 seconds.

Truth Table

MODE		SD	SW	TXD-LP	TXD-HP	LED	Receiver	TR1	TR2	RXD
Shutdown		Н	Off	L	L	Off	Don't Care	Off	Off	H(Pull-up)
Transmitter	LP	L	On	Н	L	LP	Don't Care	Off	On	L(echo)
	HP	L	On	L	Н	HP	Don't Care	Off	On	L(echo)
Receiver		L	On	L	L	Off	IrDA Signal	Off	On	L
		L	On	L	L	Off	No Signal	On	Off	Н


H:high, L:Low LP : Low power IE, HP : High power IE


(Note) Don't input Transmitter LP high signal and HP high signal at the same time in transmitter mode.

*RXD equivalent circuit

*TXD equivalent circuit

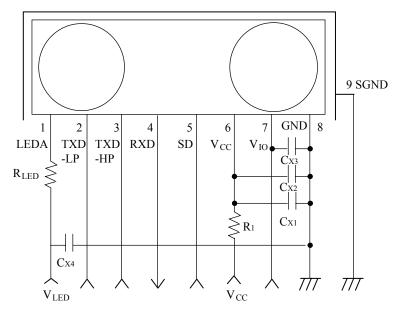
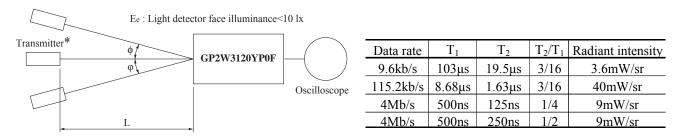

(Ta=25°C)

Fig.1 Recommended External Circuit



Comp	onents	Recommended values		
C	X1	4.7µF(Ceramic)(Note1)		
C	X2	0.47µF(Ceramic)(Note1)		
С	X3	0.47µF(Ceramic)(Note1)		
C	X4	10µF(Ceramic)(Note1)		
R ₁ (1/16W)		4.7Ω		
R _{LED} 1/4W		$4.3\Omega(V_{LED}=3.3V)$		
(Note2)	1/10W	$2.4\Omega(V_{LED}=2.85V)$		


- (Note1) Components choose the most suitable Cx1, Cx2, Cx3, Cx4 according to the noise level and noise frequency of power supply.
- (Nore2) In order to guarantee (10 mW/sr), VLED is required 3.3 V (RLED = 4.3 Ω), VLED is required 2.85 V (RLED = 2.4 Ω).

HARP

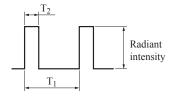
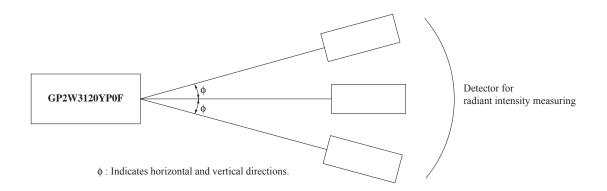


Fig.3 Standard Optical System(Receiver side)


 $\boldsymbol{\varphi}$: Indicates horizontal and vertical directions.

* Transmitter shall use the standard transmitter ($\lambda_p = 890 \text{ nm TYP.}$) which is adjusted the radiation intensity at 3.6 mW/sr (at 9.6 to 115.2 kb/s), 9 mW/sr (at 4 Mb/s).



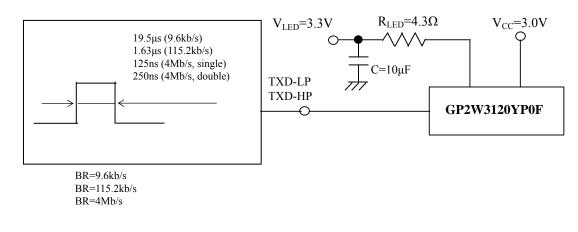

Fig.4 Output Waveform Specification(Transmitter side)

Fig.5 Standard Optical System(Transmitter side)

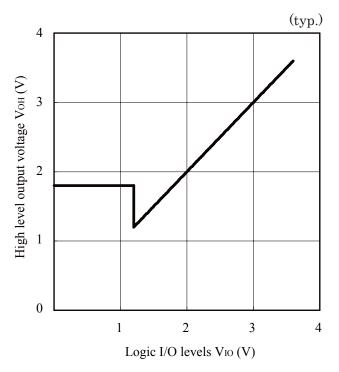
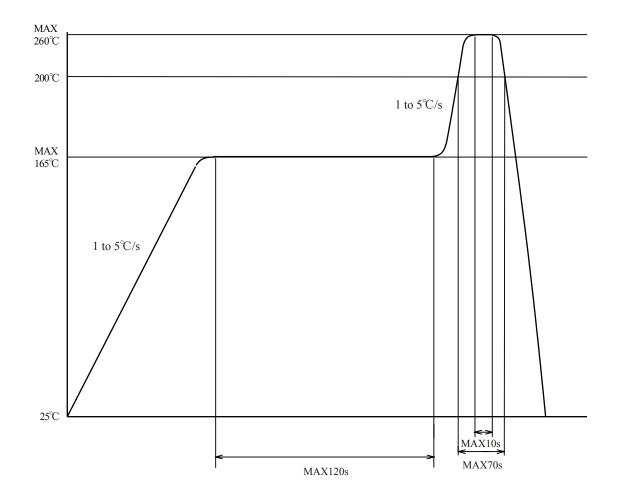


Fig.6 Recommended Circuit of Transmitter side

Notes

 When the system (program) is designed, the Turn Around Time shall be secured by considering 500 μs or more that is specified to IrDA.
 Then, this Turn Around Time means the time when this device does not temporarily detect the signal light

Then, this Turn Around Time means the time when this device does not temporarily detect the signal light, since the transmitted light form the transceiver reaches the detector side of the transceiver.


- (2) As it is necessary 1 ms or more (at Ta =25 °C, no input signal) to return from shut-down mode to readyoperation mode, please consider this point at the system (program) designing. Also, please confirm thoroughly the operation in actual application.
- (3) When there is much external disturbing light source is located near this transceiver and the detector face resceiver much external disturbing light, there is case that the pulse other than signal output is generated as noise on output terminal of this transceiver. Please consider the lay-out and structure to reduce disturbing light on the detector face.
- (4) In case that this sensor is adopted in IR communication system, please use it according to the signal method which is specified by [Serial Infrared Physical Layer Link Specification Version 1.4] published by Infrared Data Association. False operation may happen if the different signal method is used.
- (5) In circuit designing, make allowance for the degradation of light emitting diode output that results from long continuous operation. (50 % degradation/5 years)

SHARP

Soldering Method

1. In case of solder reflow

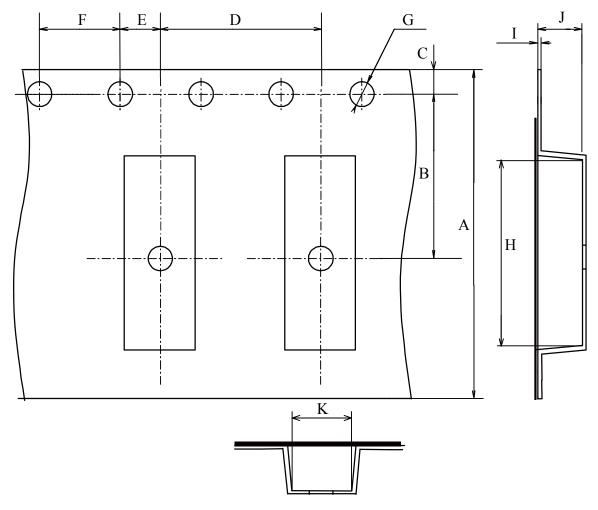
Please carry out only two times soldering at the temperature and the time within the temperature profile as shown in the figure below. Reflow interval shall be within 3 days under conditions, 10 to 30°C, 70%RH or less.

2. Other precautions

An infrared lamp used to heat up for soldering may cause a localized temperature rise in the resin. So keep the package temperature within that specified in Item 1. Also avoid immersing the resin part in the solder. Even if within the temperature profile above, there is the possibility that the gold wire in package is broken in case that the deformation of PCB gives the affection to lead pins. Please use after confirming the conditions fully by actual solder reflow machine.

3. Soldering

- Soldering iron shall be less than 25W, and temperature of point of soldering iron shall use at 300°Cor less.
- Soldering time shall be within 5s.
- Soldered product shall treat at normal temperature.

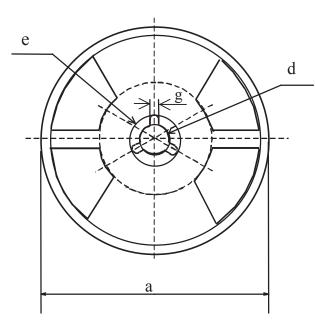


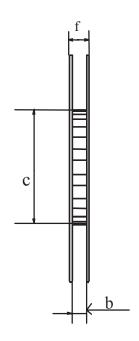
■Package specification

•Tape and Reel package

2000 pcs/reel

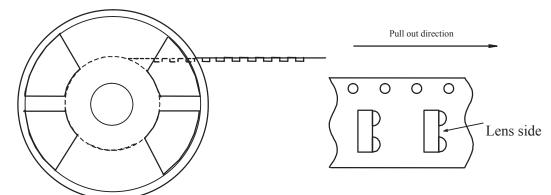
Carrier tape structure and Dimensions




(Unit:mm)

А	В	С	D	Е	F
16.0±0.3	7.5±0.1	1.75±0.1	8.0±0.1	2.0±0.1	4.0±0.1
G	Н	Ι	J	K	
$\phi 1.5^{+0.1}_{-0.0}$	7.45±0.1	0.32±0.05	2.1±0.1	2.8±0.1	

Reel structure and Dimensions



Dimension List

Dimension List (Unit : mr								
а	b	с	d					
φ 330±2	17.5±1.0	ϕ 100±1	φ13±0.2					
e	f	g						
φ 21±0.8	22.4±1.0	2±0.5						

Direction of product insertion

Cleaning Instructions

Solvent cleaning :

Solvent temperature 45°C or less, Immersion for 3 min or less

Ultrasonic cleaning :

The effect to device by ultrasonic cleaning differs by cleaning bath size, ultrasonic power output, cleaning time, PCB size or device mounting condition etc. Please test it in actual using condition and confirm that doesn't occur any defect before starting the ultrasonic cleaning. The cleaning shall be carried out with solvent below.

Recommended Solvent materials :

Ethyl alcohol, Methyl alcohol, Isopropyl alcohol

• Presence of ODC etc.

This product shall not contain the following materials. And they are not used in the production process for this product. Regulation substances : CFCs, Halon, Carbon tetrachloride, 1.1.1-Trichloroethane (Methylchloroform)

Specific brominated flame retardants such as the PBB and PBDE are not used in this product at all.

• The RoHS directive (2002/95/EC)

This product complies with the RoHS directive (2002/95/EC).

Object substances: lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE)

• Content of six substances specified in "Management Methods for Control of Pollution Caused by Electronic Information Products Regulation" (Chinese: 电子信息产品污染控制管理办法)

	Toxic and hazardous substances						
Category	Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent chromium (Cr ⁶⁺)	Polybrominated biphenyls (PBB)	Polybrominated diphenyl ethers (PBDE)	
Infrared data communication device	>	~	1	1	<i>✓</i>	<i>√</i>	

✓ : indicates that the content of the toxic and hazardous substance in all the homogeneous materials of the part is below the concentration limit requirement as described in SJ/T 11363-2006 standard.

Important Notices

• The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.

• Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.

• Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:

(i) The devices in this publication are designed for use in general electronic equipment designs such as:

- --- Personal computers
- --- Office automation equipment
- --- Telecommunication equipment [terminal]
- --- Test and measurement equipment
- --- Industrial control
- --- Audio visual equipment
- --- Consumer electronics

(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:

- --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- --- Traffic signals
- --- Gas leakage sensor breakers
- --- Alarm equipment
- --- Various safety devices, etc.

(iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:

- --- Space applications
- --- Telecommunication equipment [trunk lines]
- --- Nuclear power control equipment
- --- Medical and other life support equipment (e.g., scuba).

• If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.

• This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

• Contact and consult with a SHARP representative if there are any questions about the contents of this publication.